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LAYER IN THE STAGNATION REGION

By John Thomas Howe

SUMMARY

The laminar compressible boundary layer in chemical equilibrium is

analysed to show the effect of emission of radiation by the boundary layer

on solutions of the energy equation and on the resulting heat transfer.

Solutions are obtained at one flight condition, but for several nose

radii, in a regime where absorption is negligible. The consequent effects

on heat transfer and boundary-layer thickness are determined. The concept

of a separate boundary layer and shock layer is discussed in the light
of the results obtained.

INTRODUCTION

The advent of atmospheric flight at speeds greater than circular

satellite speed has introduced a number of problems associated with the

very high temperatures that exist in the air behind the bow shock wave

of a bluff body. One of these problems concerns the effects of the

emission of thermal radiation from the chemically dissociated air at

these high temperatures. From the results of shock tube experiments and

theory, Kivel and Bailey (ref. i) have made predictions of the emission

of radiant energy from high-temperature air in equilibrium. Kivel (ref.

2) has applied these results to study stagnation heating by radiation

emitted from the inviscid isothermal shock layer.

The Kivel study is a first look at the problem and, of course,

ignores the effects of gaseous radiation on the structure of the shock

layer. In Kivel's work and in other studies of shock layer gaseous

radiation, the radiation from the boundary layer is generally assumed

implicitly to be negligible and there is assumed to be no boundary-layer

interaction wlth the shock layer.

Smith (#el. 3) in an early analysis, performed from the boundary-

layer point of view, estimated radiation effects in the boundary layer

by studying the energy equation in which the convective terms were

neglected. The results of a numerical example in which water vapor
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emissivities were used amdtemperature profmles were assumedto be
unaffected by radiation indicated that radiation emitted by the boumdary
layer has negligible effects on boundary-layer behavior.

More recently, the problem has been formulated quite elegantly by
Gou_ard (ref. 4) and again by Tellep and E_ards (ref. 5). They treat
the radiation boumdary-layer problem in the exact sense by combining the
astrophysic radiative transfer theory with _oundary-layer theory. There
is somedifficulty inherent in solving the _esulting set of equations,
one of which is an integrodifferential equation. No solutions were
attempted in referemce 5. To solve the equations in the stagnation
region, it is necessary to evaluate the imt_gral part of the integro-
differential equatiom over the shock layer. Thus a detailed knowledge
of the radiating shock layer is essential to solving the boundary layer.
For this reasom, the practicality of trying to solve these equations in
the stagnation region boundary layer is questionable.

The purpose of the present paper is to study the radiation problem
from the boundary-layer point of view, usin_ someapproximations that
makethe problem simpler than outlined by reference 5, and yet to use
recent information concerning the emission _roperties of air. The aim
will be to verify that there is negligible _oundary-layer radiation, that
temperature profiles are umaltered_ that corduction at the wall is
unaltered_ and that wall effects are not fe_t far from the wall - in
short_ that the shock-layer approach to the radiation problem which
igmores a boundary-layer effect is satisfactory. In analysing the radiat-
ing boundary-layer problem_ the usual boumdary-layer assumptions _ill
be made. The results should either provide the verification sought or
lead to a result that contradicts someof the boundary-layer concepts.
Hopefully, in the event that the contradiction occurs_ the results would
at least suggest a further approach to the problem.

In this analysis the simplification concerning the radiation effect
arises if the gas emits but does not absorb radiation to any extent.
Then the equations to be solved are differential equations instead of
integrodifferential equations. Thus we set _ut to solve the boundary-
layer problem in which there is emission of radiation but no reabsorption.
Fortunately, this is a very reasonable assumption for someinteresting
flight conditions. An unpublished study by IC.K. Yoshikawa of Ames
Research Center concerning the emission and _bsorption of radiation in
the equilibrium shock layer showsthat in a _road flight regime, the
radiant energy absorbed is negligible compar_dwith that emitted. This
situation is attributable to the fact that ti_e amount of energy absorbed
depends, in part, on the radiation path leng_h_ and for a broad flight
regime, the path lengths are too short for _preciable absorption. The
no-absorption regime corresponds roughly to i_light at speeds less than
escape speed at altitudes above 150,000 feet for bodies having a shock
standoff distance of less than i foot. In the present analysis examples
will be studied in the flight regime where _sorption in the shock layer
is negligible and it will be assumedthat absorption in the boundary-layer
air is also negligible.
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In addition to the above assumption_ it is assumed that the boundary

layer is in chemical equilibrium, that Prandtl number is constant, and

that Lewis number is unity. Finally, it is assumed that the only non-

adiabatic effect in the inviscid shock layer is the emission of radiation.

Although the analysis is formulated for either two-dimensional or axi-

symmetric flow, the examples computed will be for axisymmetric flow only

and will pertain to bodies of different nose radii flying at 31,000 feet

per second at an altitude of 165,000 feet. For this flight condition,

it is noted that figure 4 of reference 6 shows the assumption of equilib-

rium flow in the boundary layer is valid.

SYMBOLS

a

C

c

CP i

Cp

ci

d

D

_t

f

F

F

g

h

hi °

J

exponent in equation (A5)

Chapman-Rubesin function (eq. (19))

coefficient in radiation emission equation (A5)

specific heat of species i

frozen specific heat ZCiCpi

mass fraction of species i

exponent in radiation emission equation (A5)

coefficient of self diffusion

the rate of total radiant energy emission per unit volume of gas

dimensionless stream function (eq. (21))

dimensionless stream function (eq. (47))

radiation flux

ratio of total enthalpy to total enthalpy at the edge of the

boundary layer, -_
Je

static enthalpy

heat of formation of ith species at 0° K

total enthalpy

k thermal conductivity
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K

Ko

ZD

Le

M

m

n

P

q

ro

R

s

t

T

To

U

v

wi

x

Y

cg

function defined by equation (30)

function K evaluated at 7500 ° K

heat of dissociation

Lewis number, _
k

molecular weight of species

exponent in equation (1); zero for twc-diraensional flow, unity

for axisymmetric flow

exponent in equation (A5)

pressure

Prandtl number_ Cp_
k

heat-transfer rate or energy

radius of cross section of body

universal gas constant or body nose raiius

dimensionless coordinate parallel to body surface_ equation (15)

time

temperature

reference temperature (7500 ° K)

velocity parallel to body surface

velocity normal to body surface

mass rate of production of species i per unit volume

coordinate parallel to body surface

coordinate normal to body surface

intercept in equation (AI)

velocity gradient at stagnation point (eq. (24))

thermal boundary-layer thickness

dimensionless coordinate normal to body surface (eq. (16))



P

Po

"F

t/

coefficient of viscosity

gas density

reference density (sea level air density)

slope in equation (AI)

stream function

Superscripts

5

T IT r t T derivatives with respect to the independent variable concerned

Subscripts

e outer edge of the boundary layer

i species i

o reference conditions

r radiant

s stagnation

conditions in undisturbed stream

l atoms

2 molecules

ANALYSIS

Basic Differential Equations

The physical model chosen for analysis is show_ in sketch (a). As

usual_ the region between the bow shock and the body is divided into an

inviscid shock layer and a boundary layer_ both of which emit radiation.
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Bow shock

Y

r o

Body surface

k _.------Boundary layer

\_---- s_ocki_yer

Sketch(a)

The boundary-layer equations expressing continuity of mass, the

momentum theorem, conservation of energy_ and e)ncentration of species

for a chemically reacting gas are, respectively,

b b
(puro TM) +_- (pvro m) :: 0

oy

bu bu dp + b (k b_)PU_x + PV _y = " dx _y

(i)

(2)

A

J

C

and

+_ _)D i - hi by J - di_ F

be i _c i

pu-_x + pv by
b _n bCi_

by \_D by/--

(3)

(4)

Note that since the boundary layer is assu_ed to be in chemical

equilibrium, equation (4) will not be used to determine the degree of

dissociation; it can be computed directly from local properties. In

addition, the equation of state of the gas is

R
p= p_ (_)



7

where

and the definition of total enthalpy is

J =h+u2 _ u2_- = cih i + -_-

(6)

(7)

where

T

hi= o cpidT+hi ° (8)

The exponent m in equation (I) is zero for two-dimensional flow and

unity for axisymmetric flow. The third term on the right of equation (3)

is zero because Le is assumed to be unity. The last term in equation
(3)_ div F, represents the rate at which energy is emitted by the unit

gas volume minus the rate at which energy is absorbed by the unit gas

volume. It was explained previously that we will be concerned with the

flight regime in which absorption is negligible compared with emission.

Then the div _ in equation (3) is simply the rate at which energy is

emitted per unit volume of gas.

The Radiation Term

As previously mentioned_ reference i presents predictions of the

rate of radiant energy emission per unit volume of equilibrium air as a

function of temperature and density. In appendix A of the present paper,

the results of reference I are correlated empirically (eq. (A5)) such

that the total rate of energy emission per unit volume (which is now
equated to div 7) is given by the expression

(__p_nTa
div F = Et = cT d \PoJ (9)

where c, d, n, and a are constants appropriately chosen for the regime
of interest.



8

Boundary Conditions

The boundary conditions for equations (i) through (3) are at y = O;

u = O, v = 0, j = Jw (io)

as y_

U- Ue (ii)

Another boundary condition on y is obvi(.usly required. For

solutions of the boundary-layer energy equation without radiation, it is

usually specified that j approach Je asymptotically as y approaches _,

which implies that both the first and second derivatives of j with

respect to y approach zero at the outer edge of the boundary layer.

This, of course, is compatible with the usual shock-layer energy equation

(for an inviscid nonconducting gas without radfation) which is

p --o (12)
Ikt

Thus j is constant and there are no gradients of j in the shock

layer at the outer edge of the boundary layer.

Now that we have radiation emission from _he shock layer and the

boundary layer, it is necessary to provide a n(w boundary condition

compatible with the radiating shock and boundary layer. Since the shock

layer is emitting radiation, we must modify th_ right-hand side of the

energy equation (12). If the emission of radistion is assumed to be the

only nonadiabatic effect in the shock layer, tle modified energy equation
is

p D_/-_-div F (ij
I_c

or if the Eulerian derivative is written for tle steady state, and the
boundary-layer coordinate system is assumed to be valid in the shock

layer near the boundary layer,

Du_--xx + pv = -div F (14)

Subsequently, equation (14) will be transformed in the same way the

boundary-layer equations are transformed and will be used to provide the

second boundary condition required.

A

5
0

9
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Transformations

Equations (i)_ (2), and (3) and their boundary conditions (iO) and

(ii) are to be transformed from x and y as independent variables to

s and _ by means of the Levy transformation (ref. 7), a stream ftunction,

several definitions and assumptions_ and some exterior flow relationships
as follows:

The Levy transformation is

_o X 2_m
s = PeUe_ero dx (IF)

Uer°m _o y= _ p dy (16)

A stream function is defined so that

__ m _ _ pvro m

and the continuity equation (i) is satisfied. The following quantities

are defined

g(_)= _t (18)
Je

-_- = c (19)
Pete

(where C_ the Chapman-Rubesin function of reference 8 is assumed

constant) and

f'(n)= _ (2o)
u e

from which

f(n): _ (2z)

In the bluff body stagnation region it is assumed that

ro = _ (22)
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At the outer edge of the boundary layer, the ex±ernal velocity is

described by

ue --_x (23)

_here from modified Newtonian flow concepts in the stagnation region

/2(p s - p_)I

_ = _#! _ esTP-)-- (24)

It is further assumed that

Pete = (Pe_e)s (25)

use of equations(22), (23), and (25) in eq_tions (15) and (16)
yields

2(m+l)
#Pete x

s = (26)
2(m + l)

A

5
0

9

/(m + l)_#Y
--J CPe_e Jo _ df (27)

Thus, s is proportional to xa and x4

symmetric flows, respectively, while

by the density variation.

for two-c[imensional and axi-

is a f_ction of y weighted

Transformation of equations (2) and (3) to i,he new independent

variables s and _ by means of the defined quanlities and assumptions

results in the following set of ordinary differe1_ial equations (for
constant P-_

f''' + ff" = ue2Sdue (fds ,2 _ _._ (28)

 +fg' 1) jepj Je an J

The right-hand side of equation (28) will be neglected by virtue of the

qualitative physical argument of reference 9 (based on the fact that the
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surface temperature is much lower than T_) The right-hand side of
equation (29) will be neglected because uea < < Je in the stagnation
region in hypersonic flow. Thus if T and D in equation (29) are
expressed in terms of g(_), similarity solutions of both equations (28)
and (29) can be obtained. This is done by representing the chemically
reacting air as a binary mixture of air atoms and air molecules in
equilibrium. Nowletting subscript i demote atoms and subscript 2 denote
molecules, we write the law of massaction in terms of the partial
pressures (ref. i0, p. 28)

2 -i : _(_) (3o)Pl P2

Using the species equation of state

R

Pi = °i _ p< (31)

and the fact that

½ = _ (32)

in equation (30) yields

4clap = K(T) (33)

i - cl2

Also from reference iO (p. 30)

d(_nK) %b
d_ = _ (34)

The heat of dissociation (noting that the heat of formation of the air

molecule is zero)

o o o

ZD = hl - h2 = hl (35)

is assumed constant. Integrating equation (34 ) and substituting the

result in equation (33) with the boundary conditions K = K o at T = To
yields

K(T) = K o e R = '4c&aPa (36)
i - cl

Reference ii shows that when a mixture of air atoms and air molecules is

assumed, Cpl and Cp2 are both almost constant in a temperature range
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from 2_000° to 9_000° K, and they differ from oae another by less than
15 percent. Thus we will arbitrarily choose a constant commonvalue of

N

Cpl ~ Cpa Z 0.318 Btu/ib OR between them such that any deviation from

that common value is less than i0 _ercent. The_ from equation (7) using

equation (18) and the fact that u_ < < 2j e in the stagnation region

j_ = cp2T + ciZ D

Je J_ = g(_) (37)

or

T = Je,g(_) - CiZD (38)

Cp2

Eliminating cI between equations (36) and (38, yields

T= 1

Cp 2

Je g(_l) - _D/i i _o

M2-'D i

+4p e F

Ko

(39)

Now T is a function of g (or _) alone (if we consider that p is

essentially constant in the stagnation region). By use of equations (5),

(6), and (38), P becomes a function of T and hence_

M2PZD

P = (zo + Jeg - cp2m)R_ (4o)

If equation (40) is used in equation (29), and lhe right-hand sides of

equations (28) and (29) are omitted, the differential equations become

f"' + ff"= o (41)

A
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9

g,, In a-I_+fg' .... 0

P-_ (m + l)_Je0o _ OoRT(_D + Jeg " cp2T)
(42)

where T is given by equation (39) • The boundery conditions become

(from eqs. (i0) and (ii)) at _ = O,

f = f' -- 0, g = gw (43)
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at _ _ _

f, i (44)

The outer boundary condition on equation (42) is developed by use

of equation (14) for the shock layer. Transformation of equation (14)

in the same manner as equations (i), (2), and (3) yields the energy

equation for the shock layer adjacent to the boundary layer

cT d M2PZ D ]nTa-l

fg' = I( m + _JePol [RTPo(_D + Jeg- cp2T)J
(45)

Equation (45) is an expression for the first derivative of g. Applying

equations (42) and (45) at the edge of the boundary layer (at g = i)
shows that

ge" = 0 (46)

Of course_ precisely the same result could have been derived if conduction

and diffusion effects had been required to vanish at the edge of the

boundary layer. Equation (41) is the Blasius equation of reference 12

if _ is related to the Blasius _ and f(_) and its derivations are

related to the Blasius F(_) and its derivatives by

f, = F'

= #'5

(47)

Equations (47) cause the boundary conditions on f(_) to be compatible

with those on F(_) in reference 12. Thus the solution of equation (41)

can be obtained from reference 12. It is noted that although a similarity

type solution of equation (42) is possible, generality is lost in that

it is necessary to specify a nose radius (for _) and flight condition

for each solution.

Heat Transfer to the Wall

From the solutions of the energy equation, we want to determine the

heat flux at the wall due to conduction and diffusion and, in addition,

to determine how much radiant energy originating in the boundary layer
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strikes the wall (radiant heat transfer to the wall from the region

between the edge of the boundary layer and the shock is not included in

this discussion). To evaluate the radiant emergy, we simply assume that

half the radiant energy emitted from each vo-.ume element in the boundary

layer is directed toward the wall and half t_,ward the shock layer. Then

in the stagnation region the heat flux at th_ wall due to conduction,

diffusion, and radiation emitted from the bolmdary layer is (for a

nonreflecting wall)

_k _y-_T _-Y--_w_ci_]-_I 6 / \nTaqw

or if equation (45) is rewritten and it is a_sumed that Le

\Poj

Transforming equation (49) as before and making use of equation (27)

yields

is unity

Jeg_' j(m + 1)CPe_e_
qw = p---_

c / CPe_e
- 2P--_(m + i)_00 1]eTd ['(

_PZD ]nTa-I

The first term is thus the combined conductio_ _d diffusion heat flux

and the second term is the radiative heat tra_Isfer from boundary-layer

air for a nonreflecting wall (hereafter refer:'ed to as qre).

Numerical Solution

Equations (41) and (42) were solved slm_taneously subject to

boundary conditions (43) , (44), and (46). Th_ solutions were obtained

using the Adams Moulton (ref. 13, p. 200) pre&ictor corrector numerical

integration method programmed for the IBM 704 electronic data processing

machine. The value of gw' needed to start lhe numerical solution of

equation (42) was determined by trial and error so that the boundary

condition (46) was satisfied. The specified value of gw corresponds

to the wall temperature cited below. All exan_les corresponded to flight
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of axisymmetric bodies of varying nose radii at a speed of 31,000 feet

per second at an altitude of 165,000 feet. The wall temperature was

fixed at 2000 ° K. Values of ZD and K o were obtained by matching

equations (36) and (37) with results of reference 14 at a reference

temperature of 7500 ° K.

It became increasingly difficult to obtain solutions as the body

nose radius increased. The boundary layer thickened, accuracy demanded

smaller integration steps, and matching boundary conditions became more

difficult. Solutions were obtained, however, for body nose radii up to
iO feet.

DISCUSSION OF THE RESULTS

In the analysis of this problem, several simplifying assumptions

have been made. Also, the equation by which the radiation emission is

calculated is an approximation to experimental results. For these

reasons, the results of the analysis are not considered to be exact_ but
are intended to show qualitative effects.

We will examine in some detail the influence of the radiation term

on the solution of the energy equation. Furthermore, the influence of

the radiation term on both convective and total heat transfer will be

evaluated.

Solutions of the energy equation in terms of total enthalpy are

shown in figure i. The upper curve is the enthalpy profile for bodies

of all radii if there is no radiation term in the energy equation. The

lower curve corresponds to a solution with radiation emission and pertains

to a body with a nose radius of i0 feet. Curves of radiation emission

for smaller nose radii lie between those shown. It is important to note

that the curve for the no-radiation case goes to unity fairly rapidly,

while the curve with radiation approaches unity very slowly (at values

of N greater than those shown). The emission of radiation effectively

thickens the thermal boundary layer (thickness here being defined by

that point where equation (47) is satisfied) thus including more of the

shock layer air within the boundary layer.

The temperature profiles corresponding to the enthalpy profiles are

shown in figure 2. Again, the upper curve corresponds to the usual

solution of equation (43) for all body sizes if the radiation term is

omitted. It exhibits the usual inflections for equilibrium boundary

layers (these inflections are also evident in similar plots presented in

ref. 15). Again, the upper curve for the no-radiation case converges to

unity very rapidly. The lower curves in figure 2 correspond to solutions

of equation (43) with the radiation term included and are for nose radii

of 3 and i0 feet. Here the difference between the radiation and no-

radiation solutions is somewhat more pronounced than the differences
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observable on the previous figure. The therm_l boundary layer is thicker

and, of course, conduction and diffusion effe(ts are felt much farther

from the wall.

It should also be noted that the emissior of radiation by the boundary

layer diminishes the temperature and enthalpy gradients at the wall small

amounts (actually somewhat too small to be seen on fig. 2). Such a

result is to be expected since the greater proportion of radiation is

emitted from the hotter air not in close proximity to the wall. It can

be anticipated that the corresponding reduction in convective heat

transfer is more than offset by the added radiant heating load. More

will be said of this in connection with a subsequent figure.

Figure 3 shows the distribution of radiant energy emitted in the

boundary layer normalized to the value at the edge of the boundary layer

for the nose radii of 3, 5, and i0 feet. The figure shows that the

emission rate rises rapidly up to _ = 5, after which it rises more

gradually to unity at the boundary-layer edge. If _ were linearly

related to y, the area under a given curve u: to any value of _ would

be proportional to q_(_), the rate of total :adiant energy emission

from the layer of air'between the wall and 0. However, because of the

compressibility effect, _ is not linearly re]ated to y (see eqs. (16)

and (27)), and to obtain qr(_) as a function of _, it is necessary to

perform the integration shown in equation (51), where qr(_)/qr e is the

ratio of the radiant energy emitted from the layer of air between the

wall and _ to the total radiant energy emitted by the boundary layer:

A

5
0

9

/o ]
qr( ) + Je:: :p2)roR J

C!re

_o _e TdI(Z D M_PZD ]nTa-:
+ Jeg - C--paT)DDRTJ d_

(51)

The ratio is plotted in figure 4. Without the radiation term in the

energy equation, the solution converged at a v_lue of _ of roughly i0

for all nose radii. Thus the figure shows that most of the radiation

emitted by the boundary layer is from air that for the no-radiation case

would have been outside the boundary layer.

The ratio of the total heating load (comp_ted from eq. (51)) including

incident radiation from the boundary layer to _eat transfer without

radiation is plotted as a function of nose radius in figure 5. It should

be noted that the comparison does not include the radiation contribution

from the region between the edge of the boundary layer and the shock wave.
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It was mentioned previously that the slight reduction of convective

heating due to bo_undary-layer radiation emission is more than offset by

the added radiative heating. This is shown in the figure by the fact

that the ratio plotted is always greater than unity. For the 3-foot

nose radius, the total heat transfer is increased by almost one third

because of radiation heating, and for the iO-foot nose radius, it is
more than doubled.

Now that the detailed solutions of the boundary-layer energy equation

in the no-absorption regime have been discussed, it is pertinent that

an evaluation be made of the boundary-layer approach for studying gas-

dynamic effects in the stagnation region when self-radiation is important.

In the analysis, several simplifying assumptions and concepts have been

used. It is not usually possible to assess the full significance of all

the assumptions in advance, but one hopes to be able to tell by the

resulting solutions just how reasonable his assumptions were. In the

present case, one further step has been made in the usual boundary-layer

analysis in order to include the effec% of radiation emission. In the

resulting solutions the momentum boundary layer w_s unchanged. However,

the solutions of the energy equation showed that its boundary conditions

were satisfied at distances from the wall several times that of the

corresponding no-radiation case. Indeed, the thermal boundary-layer

thicknesses were comparable to the thicknesses usually calculated for the

inviscid adiabatic shock layer. For this reason, the concept of a

thermal boundary layer (%o which conduction and diffusion effects are

limited) separate and distinct from a shock layer loses its usefulness.

The results leading to this conclusion were obtained for the no-

absorption case. An attempt was also made to solve the very strong
absorption case. The results of that effort will not be discussed

except to say that the remarks of the preceding paragraph also apply to

the very strong absorption case, and additionally that the convective

heating at the wall is greatly altered by radiation effects for the very
strong absorption case.

The next approach to studying the gaseous radiation problem for

the bluff body suggests itself. It is, of course, to solve the flow field

from the wall to the shock including viscous, conduction, diffusio_and
radiation effects in the flow equations. It is anticipated that such

solutions would also give the shock standoff distance. Thus an attempt
to obtain solutions from the body surface to the shock seems to be in

order. In that light, the present study may be regarded as a first step
toward this goal.

CONCLUDING REMARKS

The effects of radiation emission from the boundary-layer air have

been studied by including an emission term in the energy equation. This
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term was expressed by a relationship develoled from experimental results

of Kivel and Bailey. An appropriate boundary condition on the energy

equation has been derived which limits cond1_tion and diffusion effects

to the boundary layer, and which allows the shock layer total enthalpy

to vary as a result of the emission of radiation from the shock layer.

For the flight condition used in the s(lutions the emission of

radiant energy diminishes the total enthalp3 by a small amount. Similarly,

the enthalpy gradient at the wall and thus _he convective heat transfer

are diminished slightly. However, the redu(tion in convective heat

transfer is more than offset by an added radiant heat-transfer load.

Existence of an enthalpy gradient at the outer edge of the boundary

layer and the self-emission of radiant energy increase the thickness of

the thermal boundary layer by a large amount. More air (which is at an

elevated temperature and is emitting radiation) is associated with the

boundary layer. Conduction and diffusion e_fects are felt farther from

the wall. For this reason, the concept of s thermal boundary layer

separate and distinct from the shock layer _hen self-radiation is consid-

ered loses its usefulness in gaseous radiation studies that are more

refined than those now in existence. At present the only way to calculate

the gaseous radiation contribution to aerod_mamic heating is to neglect

the boundary layer and surface effects and use the shock layer results

alone. Such an approach to estimating the ladiative heat transfer_ of

course, gives no information of radiative effects on flow field structures

standoff distance or convective heating. A_though the convective heating

is not significantly affected in the present analysis for the no-absorption

flight regime_ it is greatly altered in the very strong absorption regime_

and other methods must be used to study the problem. It is anticipated

that in the intermediate regime (where self-_bsorption is significant

but not excessive), convective heat transfez is substantially altered by

the radiation effects, and that boundary layer and shock layer are again

not separable. It is suggested that the next approach be to solve the

flow field from the body to the shock without imposing a boundary-layer
concept.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, Calif., June 20, 1911
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APPENDIX A

CORRELATION OF RADIANT EMISSIONDATA

Predictions of the total rate of radiant energy emission per unit

volume from high-temperature air are given in reference i. To utilize

this information in the present analysis, it was necessary to derive an

analytic expression for the variation of the radiant energy with temper-

ature and density. Results from reference i are shown on figure 6 as

dashed lines. Each curve (which was determined by five points) was

replaced by its individual least squares best fit straight line. These

are the straight lines shown in figure 6 and are represented by the

expression

Or

loglo _>= loglo_(T) + _(T)loglo <_ (AI)

\T(m)

2

where _(T) and T(T) are listed on the figure.

and all the intercepts logloT(T) and loglo_(T ) were fitted by the least

squares best fit straight line; that is, the lines

Secondly, all the slopes

and

logloT(T) = loglon + a logloT (A3)

were obtained.

logged(m): loglo_-_)+ d log_o_ (A4)

Combining equations (A2), (A3) , and (A4) yields

_(_,m) : e_ \_oJ (A_)

Thus all the lines in figure 7 were obtained from the single expression
(A5) where c, d, n, and a are shown in the figure (where T is in

OK, and Et is watts/am3).



2O

Although the representation of the predhction of reference i by
equation (A5) is fair in figure 7, it can be improved in a restricted
range of temperatures and densities if the t_chnique is applied to the
data of that range alone. The results of using the data in the temper-
ature range i000° to 8000° K and the density range 10-3 __P/Do__10-1
are shownin figure 8. Equation (A5) with c_nstants shownon figure 8
was used in the calculations of this paper.

A
5
0

9
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Figure _.- Ratio of total boundary-layer heat transfer to wall with

radiation to that without radiation as a function of nose radius

(flight speed 31,000 ft/sec at 165,000 ft altitude, Tw = 2000 ° K).
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